Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms

<u>Frank Hutter</u>¹, Youssef Hamadi², Holger Hoos¹, and Kevin Leyton-Brown¹

¹University of British Columbia, Vancouver, Canada ²Microsoft Research Cambridge, UK

Motivation: Performance Prediction

- Useful for research in algorithms
 - What makes problems hard?
 - Constructing hard benchmarks
 - Constructing algorithm portfolios (satzilla)
 - Algorithm design
- Newer applications
 - Optimal restart strategies (see previous talk by Gagliolo et al.)
 - Automatic parameter tuning (this talk)

Motivation: Automatic tuning

- Tuning parameters is a pain
 - Many parameters → combinatorially many configurations
 - About 50% of development time can be spent tuning parameters
- Examples of parameters
 - Tree Search: variable/value heuristics, propagation, restarts, ...
 - Local Search: noise, tabu length, strength of escape moves, ...
 - CP: modelling parameters + algorithm choice + algo params
- Idea: automate tuning with methods from AI
 - More scientific approach
 - More powerful: e.g. automatic per instance tuning
 - Algorithm developers can focus on more interesting problems

Related work

Performance Prediction

[Lobjois and Lemaître, '98, Horvitz et. al '01, Leyton-Brown, Nudelman et al. '02 & '04, Gagliolo & Schmidhuber '06]

Automatic Tuning

- Best fixed parameter setting for instance set [Birattari et al. '02, Hutter '04, Adenso-Diaz & Laguna '05]
- Best fixed setting for each instance [Patterson & Kautz '02]
- Changing search strategy during the search
 [Battiti et al, '05, Lagoudakis & Littman, '01/'02, Carchrae & Beck '05]

Overview

- Previous work on empirical hardness models [Leyton-Brown, Nudelman et al. '02 & '04]
- EH models for randomized algorithms
- EH models for parametric algorithms
- Automatic tuning based on these
- Ongoing Work and Conclusions

Empirical hardness models: basics

- Training: Given a set of t instances inst₁,...,inst_t
 - For each instance inst_i
 - Compute instance features $\mathbf{x}_{i} = (x_{i1},...,x_{im})$
 - Run algorithm and record its runtime y_i
 - Learn function f: features → runtime, such that y_i ≈ f(x_i) for i=1,...,t
- Test / Practical use: Given a new instance inst_{t+1}
 - Compute features x_{t+1}
 - Predict runtime $y_{t+1} = f(x_{t+1})$

Which instance features?

- Features should be computable in polytime
 - Basic properties, e.g. #vars, #clauses, ratio
 - Graph-based characterics
 - Local search and DPLL probes
- Combine features to form more expressive basis functions $\phi = (\phi_1, ..., \phi_q)$
 - Can be arbitrary combinations of the features x₁,...,x_m
- Basis functions used for SAT in [Nudelman et al. '04]
 - 91 original features: x_i
 - Pairwise products of features: x_i * x_i
 - Feature selection to pick best basis functions

How to learn function f: features \rightarrow runtime?

- Runtimes can vary by orders of magnitude
 - Need to pick an appropriate model
 - Log-transform the output e.g. runtime is $10^3 \sec \Leftrightarrow y_i = 3$
- Simple functions show good performance
 - Linear in the basis functions: $y_i \approx f(\phi_i) = \phi_i * \mathbf{w}^T$
 - Learning: fit the weights **w** (ridge regression: $\mathbf{w} = (\lambda + \Phi^T \Phi)^{-1} \Phi^T y)$
 - Gaussian Processes didn't improve accuracy

Overview

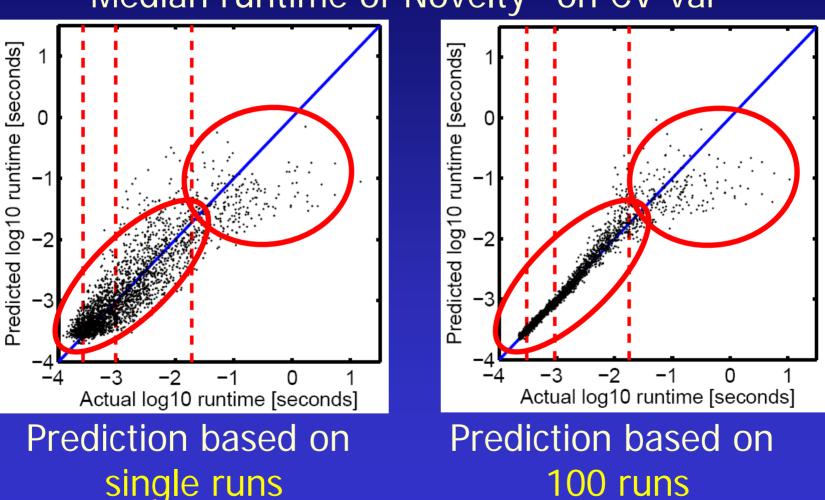
- Previous work on empirical hardness models [Leyton-Brown, Nudelman et al. '02 & '04]
- EH models for randomized algorithms
- EH models for parametric algorithms
- Automatic tuning based on these
- Ongoing Work and Conclusions

EH models for randomized algorithms

- We have incomplete, randomized local search algorithms
 - Can this same approach still predict the run-time ? Yes!
- Algorithms are incomplete (local search)
 - Train and test on satisfiable instances only

Randomized

- Ultimately, want to predict entire run-time distribution (RTDs)
- For our algorithms, RTDs are typically exponential
- Can be characterized by a single sufficient statistic (e.g. median run-time)

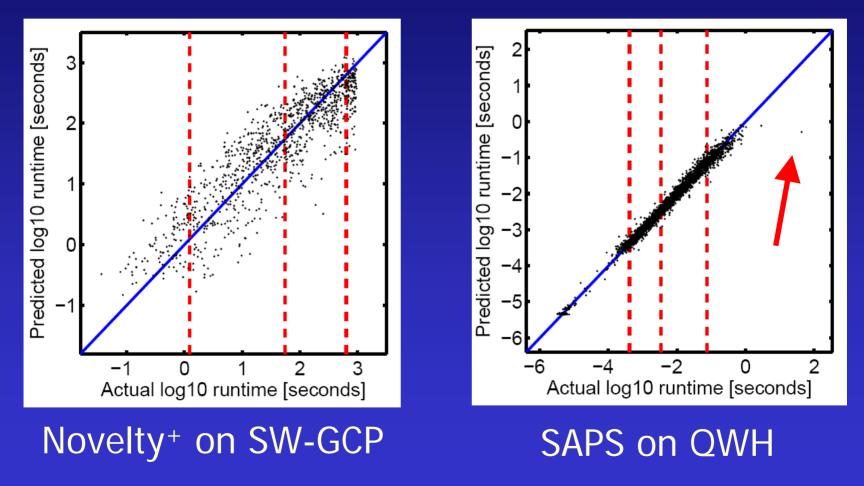

EH models: basics \rightarrow sufficient stats for RTD

- Training: Given a set of t instances inst₁,..., inst_t
 - For each instance inst_i
 - Compute instance features $\mathbf{x}_{i} = (x_{i1},...,x_{im})$
 - Compute basis functions $\phi_i = (\phi_{i1}, ..., \phi_{ik})$
 - Run algorithm and record its runtime y_i
 - Learn function f: basis functions → runtime, such that y_i ≈ f(\$\phi_i\$) for i=1,...,t
- Test / Practical use: Given a new instance inst_{t+1}
 - Compute features x_{t+1}
 - Compute basis functions $\phi_{t+1} = (\phi_{t+1,1}, \dots, \phi_{t+1,k})$
 - Predict runtime $y_{t+1} = f(\phi_{t+1})$

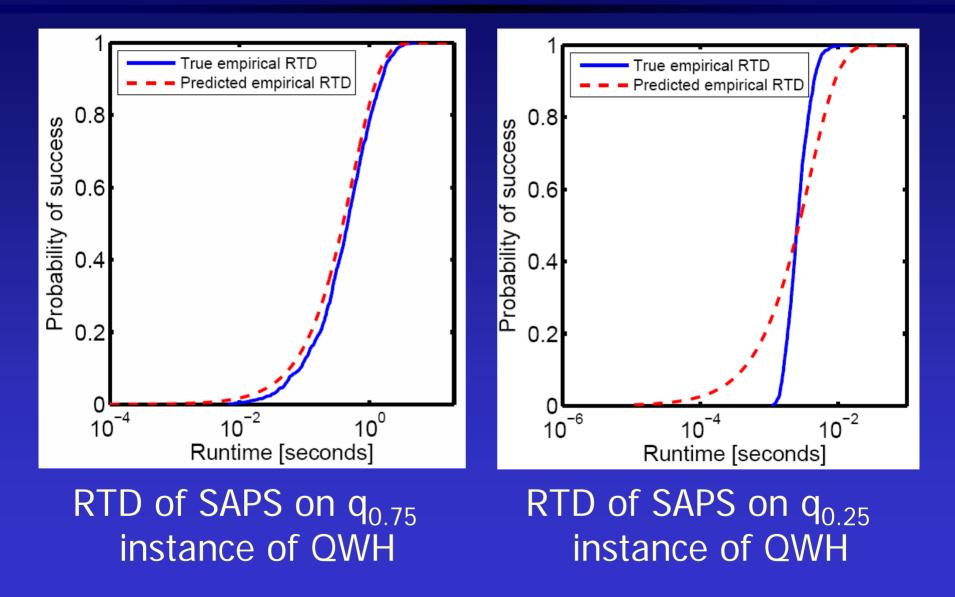
EH models: basics \rightarrow sufficient stats for RTD

- Training: Given a set of t instances inst₁,..., inst_t
 - For each instance inst_i
 - Compute instance features $\mathbf{x}_{i} = (x_{i1},...,x_{im})$
 - Compute basis functions $\phi_i = (\phi_{i1}, ..., \phi_{ik})$
 - Run algorithm multiple times and record its runtimes $y_i^1, ..., y_i^k$
 - Fit sufficient statistics s_i for distribution from y_i¹, ..., y_i¹
 - Learn function f: basis functions → sufficient statistics, such that s_i ≈ f(φ_i) for i=1,...,t
- Test / Practical use: Given a new instance inst_{t+1}
 - Compute features x_{t+1}
 - Compute basis functions $\phi_{t+1} = (\phi_{t+1,1}, \dots, \phi_{t+1,k})$
 - Predict sufficient statistics $s_{t+1} = f(\phi_{t+1})$

Predicting median run-time



Median runtime of Novelty⁺ on CV-var


Hutter, Hamadi, Hoos, Leyton-Brown: Performance Prediction and Automated Tuning

Structured instances

Median runtime predictions based on 10 runs

Predicting run-time distributions

Overview

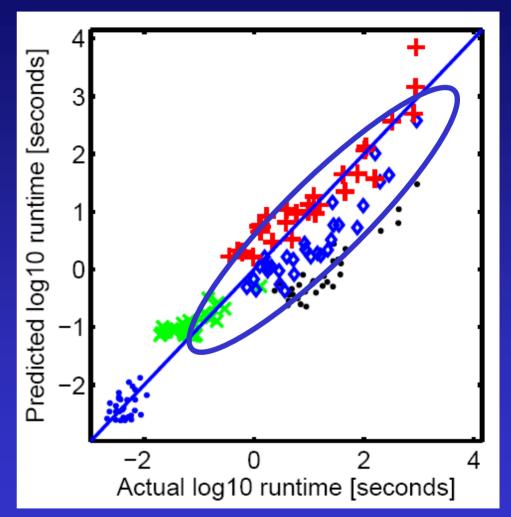
- Previous work on empirical hardness models [Leyton-Brown, Nudelman et al. '02 & '04]
- EH models for randomized algorithms
- EH models for parametric algorithms
- Automatic tuning based on these
- Ongoing Work and Conclusions

EH models: basics \rightarrow parametric algos

- Training: Given a set of t instances inst₁,..., inst_t
 - For each instance inst_i
 - Compute instance features $\mathbf{x}_{i} = (x_{i1},...,x_{im})$

Compute basis functions $\phi_i = \phi(\mathbf{x}_i)$

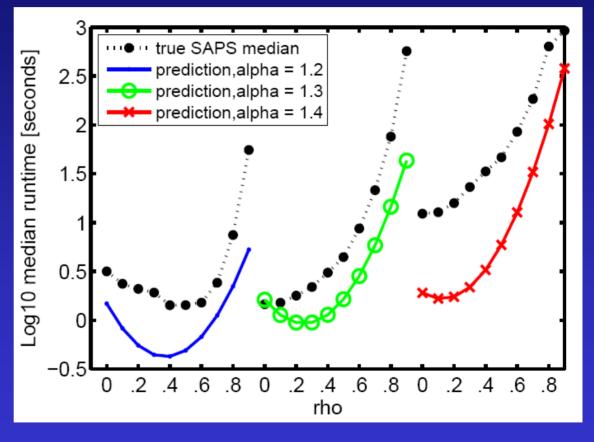
- Run algorithm and record its runtime y_i
- Learn function f: basis functions → runtime, such that y_i ≈ f(\$\u03c6\$i) for i=1,...,t
- Test / Practical use: Given a new instance inst_{t+1}
 - Compute features x_{t+1}


Compute basis functions $\phi_{t+1} = \phi(\mathbf{x}_{t+1})$ Predict runtime $y_{t+1} = f(\phi_{t+1})$

EH models: basics \rightarrow parametric algos

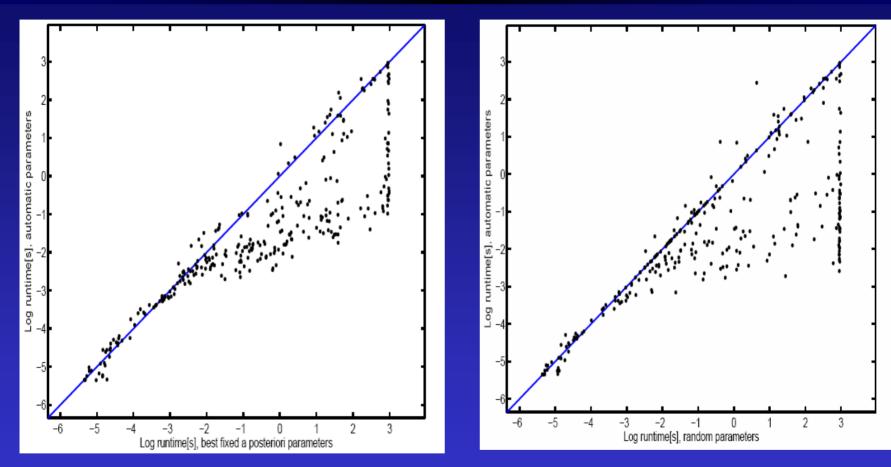
- Training: Given a set of t instances inst₁,..., inst_t
 - For each instance inst_i
 - Compute instance features $\mathbf{x}_{i} = (x_{i1},...,x_{im})$
 - For parameter settings $p_i^{\ 1},...,p_i^{\ n_{i:}}$ Compute basis functions $\phi_i^{\ j} = \phi(\mathbf{x}_i, p_i^{\ j})$ of features <u>and</u> parameter settings (quadratic expansion of params, multiplied by instance features)
 - Run algorithm with each setting p_i^{j} and record its runtime y_i^{j}
 - Learn function f: basis functions → runtime, such that y_i ≈ f(φ_i) for i=1,...,t
- Test / Practical use: Given a new instance inst_{t+1}
 - Compute features x_{t+1}
 - For each parameter setting p^{j} of interest, Compute basis functions $\phi_{t+1}{}^{j} = \phi(x_{t+1}, p^{j})$ Predict runtime $y_{t+1}{}^{j} = f(\phi_{t+1}{}^{j})$

Predicting SAPS with different settings


- Train and test with 30 different parameter settings on QWH
- Show 5 test instances, each with different symbol
 - Easiest
 - 25% quantile
 - Median
 - 75% quantile
 - Hardest
- More variation in harder instances

One instance in detail

(blue diamonds in previous figure)


- Note: this is a projection from 40dimensional joint feature/parameter space
- Relative relationship predicted well

Automated parameter setting: results

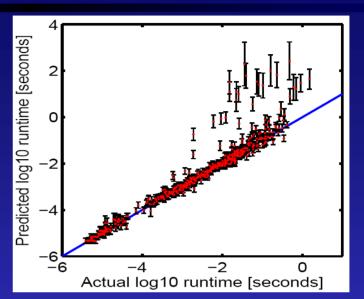
Algo	Data Set	Speedup over default params	Speedup over best fixed params for data set
Nov ⁺	unstructured	0.90	0.90
Nov ⁺	structured	257	0.94
Nov ⁺	mixed	15	10
SAPS	unstructure	V_{0t} the second se	1.05
SAPS	structured	$\begin{array}{c c} & 2.9 \\ \hline & the \ best \\ \hline & corithm \ to \end{array} \end{array}$	Do You ne? 0.98
SAPS	mixed	;-) to 2.31	Do You have one? 0.98 1

Results for Novelty⁺ on Mixed

Compared to best fixed parameters

Compared to random parameters

Overview


- Previous work on empirical hardness models [Leyton-Brown, Nudelman et al. '02 & '04]
- EH models for randomized algorithms
- EH models for parametric algorithms
- Automatic tuning based on these
- Ongoing Work and Conclusions

Ongoing work

Uncertainty estimates

- Bayesian linear regression vs. Gaussian processes
- GPs are better in predicting uncertainty

• Active Learning

- For many problems, cannot try all parameter combinations
- Dynamically choose best parameter configurations to train on
- Want to try more problem domains (do you have one?)
 - Complete parametric SAT solvers
 - Parametric solvers for other domains (need features)
 - Optimization algorithms

Conclusions

- Performance Prediction
 - Empirical hardness models can predict the run-times of randomized, incomplete, parameterized, local search algorithms
- Automated Tuning
 - We automatically find parameter settings that are better than defaults
 - Sometimes better than the best possible fixed setting
- There's no free lunch
 - Long initial training time
 - Need domain knowledge to define features for a domain (only once per domain)

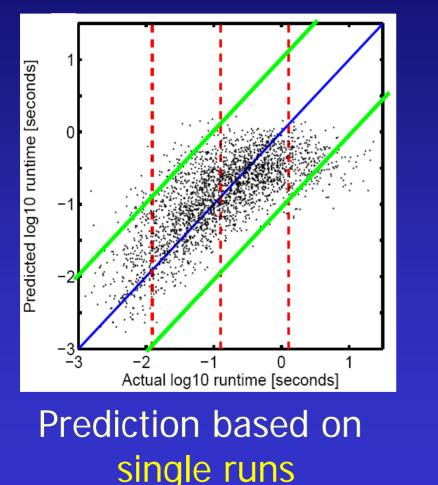
The End

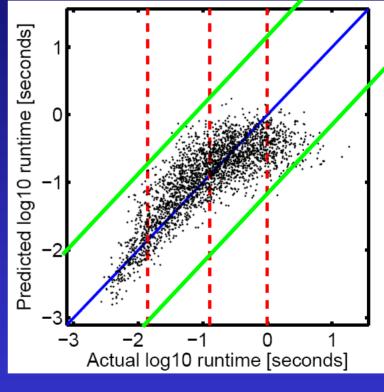
• Thanks to

- Holger Hoos, Kevin Leyton-Brown, Youssef Hamadi
- Reviewers for helpful comments
- You for your attention ☺

Experimental setup: solvers

- Two SAT solvers
 - Novelty⁺ (WalkSAT variant)
 - Adaptive version won SAT04 random competition
 - Six values for noise between 0.1 and 0.6
 - SAPS (Scaling and Probabilistic Smoothing)
 - Second in above competition
 - All 30 combinations of
 - * 3 values for α between 1.2 and 1.4
 - \bigstar 10 values for ρ between 0 and 0.9
- Runs cut off after 15 minutes


Cutoff is interesting (previous talk), but orthogonal


Experimental setup: benchmarks

- Unstructured distributions:
 - SAT04: two generators from SAT04 competition, random
 - CV-fix: uf400 with c/v ratio 4.26
 - CV-var: uf400 with c/v ratio between 3.26 and 5.26
- Structured distributions:
 - QWH: quasi groups with holes, 25% to 75% holes
 - **SW-GCP**: graph colouring based on small world graphs
 - QCP: quasi group completion , 25% to 75% holes
- Mixed: union of QWH and SAT04
- All data sets split 50:25:25 for train/valid/test

Predicting median run-time

Median runtime of SAPS on CV-fix

Prediction based on 100 runs

Automatic tuning

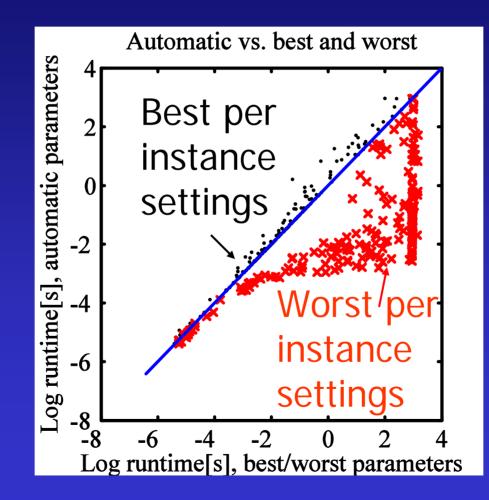
- Algorithm design: new algorithm/application
 A lot of time is spent for parameter tuning
- Algorithm analysis: comparability
 - Is algorithm A faster than algorithm B because they spent more time tuning it ? ③
- Algorithm use in practice
 - Want to solve MY problems fast, not necessarily the ones the developers used for parameter tuning

Examples of parameters

- Tree search
 - Variable/value heuristic
 - Propagation
 - Whether and when to restart
 - How much learning
- Local search
 - Noise parameter
 - Tabu length in tabu search
 - Strength of penalty increase and decrease in DLS
 - Pertubation, acceptance criterion, etc. in ILS

Which features are most important?

- Results consistent with those for deterministic treesearch algorithms
 - Graph-based and DPLL-based features
 - Local search probes are even more important here
- Only very few features needed for good models
 - Previously observed for all-sat data [Nudelman et al. '04]
 - A single quadratic basis function is often almost as good as the best feature subset
 - Strong correlation between features
 - Many choices yield comparable performance


Algorithm selection based on EH models

- Given portfolio of n different algorithms A¹,...,Aⁿ
 - Pick best algorithm for each instance
 - E.g. satzilla
- Training:
 - Learn n separate functions
 f: features → runtime of algorithm j
- Test (for each new instance s_{t+1}):
 - Predict runtime $y_{t+1}^{j} = f(\phi_{t+1})$ for each algorithm
 - Choose algorithm A^j with minimal y^j_{t+1}

Experimental setup: solvers

- Two SAT solvers
 - Novelty⁺ (WalkSAT variant)
 - Default noise setting 0.5 (=50%) for unstructured instances
 - Noise setting 0.1 used for structured instances
 - SAPS (Scaling and Probabilistic Smoothing)
 - Default setting (alpha, rho) = (1.3, 0.8)

Results for Novelty⁺ on Mixed

Related work in automated parameter tuning

- Best default parameter setting for instance set
 - Racing algorithms [Birattari et al. '02]
 - Local search in parameter space [Hutter '04]
 - Fractional experimental design [Adenso-Daz & Laguna '05]
- Best parameter setting per instance: algorithm selection/ algorithm configuration
 - Estimate size of DPLL tree for some algos, pick smallest [Lobjois and Lemaître, '98]
 - Previous work in empirical hardness models [Leyton-Brown, Nudelman et al. '02 & '04]
 - Auto-WalkSAT [Patterson & Kautz '02]
- Best sequence of operators / changing search strategy during the search
 - Reactive search [Battiti et al, '05]
 - Reinforcement learning [Lagoudakis & Littman, '01 & '02]

Parameter setting based on runtime prediction

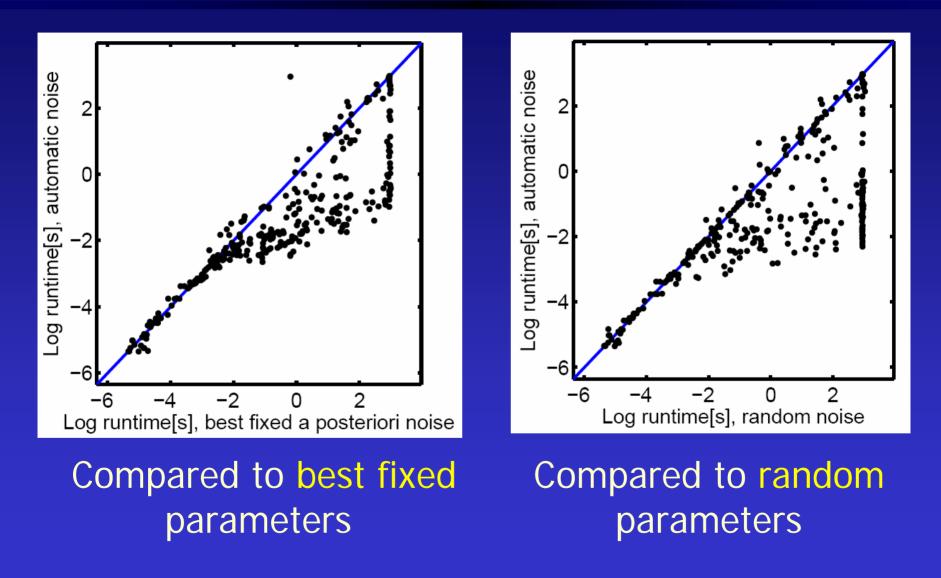
- Learn a function that predicts runtime from instance features and algorithm parameter settings (like before)
- Given a new instance
 - Compute the features (they are fix)
 - Search for the parameter setting that minimizes predicted runtime for these features

Related work: best default parameters

- Find single parameter setting that minimizes expected runtime for a whole class of problems
- Generate special purpose code [Minton '93]
- Minimize estimated error [Kohavi & John '95]
- Racing algorithm [Birattari et al. '02]
- Local search [Hutter '04]
- Experimental design [Adenso-Daz & Laguna '05]
- Decision trees [Srivastava & Mediratta, '05]

Related work: per-instance selection

- Examine instance, choose algorithm that will work well for it
- Estimate size of DPLL search tree for each algorithm [Lobjois and Lemaître, '98]
- [Sillito '00]
- Predict runtime for each algorithm [Leyton-Brown, Nudelman et al. '02 & '04]


Performance Prediction

- Vision: situational awareness in algorithms
 - When will the current algorithm be done ?
 - How good a solution will it find ?
- A first step: instance-aware algorithms
 - Before you start: how long will the algorithm take ?
 - Randomized \rightarrow whole run-time distribution
 - For different parameter settings
 - Can pick the one with best predicted performance

Automated parameter setting: resultsold

Algo	Data Set	Speedup over default params	Speedup over best fixed params for data set
Nov ⁺	unstructured	0.89	0.89
Nov ⁺	structured	177	0.91
Nov ⁺	mixed	13	10.72
SAPS	unstructure	V_{Ot} the 2	1.07
SAPS	structured	$\begin{array}{c c} V_{Ot} & 2 \\ \hline V_{Ot} & the best \\ \hline S_{Orithm} & to \\ \hline $	Do You ne? 0.93
SAPS	mixed	e;-) to 1.91	Do You Do You have one? 0.93 0.93

Results for Novelty⁺ on Mixed - old

